2018.4.20-4.26 学术活动预告
2018/4/19 16:00:51 中国科学院数学与系统科学研究院
Speaker:
周水庚 教授, 复旦大学
Title:
从自然场景图像中识别文本
Time & Venue:
2018.4.20 10:30-11:30 N913
Abstract:
自然场景图像中识别文本就是从给定的在自然场景里获得的图像中自动识别文本信息。这是近年来计算机视觉领域的研究热点问题之一,在交通等领域具有广泛应用。目前,在这个问题上最好的技术是基于注意力的编码器-解码器深度学习框架。这个报告将介绍我们最近在自然场景图片中的文本识别方面的工作进展,包括三个方面的工作:聚焦注意力网络、任意文本走向网络和编辑概率方法。我们的工作都是在基于注意力的编码器-解码器深度学习框架下完成的,但性能优于现有最好的方法。
报告人简介:周水庚,复旦大学计算机科学技术学院教授,上海市智能信息处理重点实验室副主任。主要研究领域为数据管理、机器学习和生物信息学等。在相关国际学术期刊(包括VLDB Journal, IEEE TKDE, IEEE TPDS, IEEE/ACM TCCB, IEEE TGRS, Nature Communications, Nucleic Acids Research和Bioinformatics等)和国际学术会议(包括SIGMOD,SIGKDD,VLDB,ICDE, AAAI, IJCAI,ICCV, CVPR,SODA, ECML, ECAI, ICDT, EDBT、RECOMB和ISMB等)发表研究论文200多篇;获教育部自然科学二等奖1项、教育部科技进步二等奖2项。目前为中国计算机学会理事、杰出会员,中国计算机学会生物信息学专业组主任委员、数据库专委会委员和大数据专家委员会委员等。
Speaker:
Prof. Yavar Kian, Assistant Professor at the University of Aix-Marseille, France
Title:
Around the Calderón problem in a waveguide
Time & Venue:
2018.4.23 11:00-12:00 N613
Abstract:
Let $\Omega$ be an unbounded domain of $\mathbb R^3$ associated with a closed waveguide in the sense that there exists $\omega$ a bounded domain of $\mathbb R^2$ such that $\Omega\subset\omega\times\mathbb R$. In this talk, we will consider the inverse problem of determining the magnetic field associated with the magnetic potential $A\in L^\infty(\Omega)^3$ and the electric potential $q\in L^\infty(\Omega;\mathbb C)$ appearing in the magnetic Schr?inger equation $\Delta_Au+qu=0$ on $\Omega$, where $\Delta_A$ denotes the magnetic Laplacian defined by $\Delta_A= \Delta+2iA(x)\cdot\nabla +i\textrm{div}_x(A)-|A|^2$, from some data equivalent to observations of solutions on some parts of the boundary $\partial\Omega$.
报 告 人简介:Prof. Yavar Kian received his PhD degree in Applied Mathematics from the University of Bordeaux, France, in 2010. He is currently an Assistant Professor at the University of Aix-Marseille, France. He joined the University of Aix-Marseille on 2011. His current research interests include: inverse problems for different PDEs (parabolic, hyperbolic, Schr?dinger and elliptic equations), inverse spectral problems, inverse problems on manifolds, inverse and direct problems for fractional diffusion equations.
Speaker:
谢纳庆 教授, 复旦大学
Title:
On Some Estimates of Hawking Mass for CMC Surfaces
Time & Venue:
2018.4.26 9:30-10:30 N913
Abstract:
We apply the Riemannian Penrose inequality and the Riemannian positive mass theorem to derive inequalities on the boundary of a class of compact Riemannian $3$-manifolds with nonnegative scalar curvature. The boundary of such a manifold has a CMC component, i.e. a $2$-sphere with positive constant mean curvature; and the rest of the boundary, if nonempty, consists of closed minimal surfaces. A key step in our proof is the construction of a collar extension that is inspired by the method of Mantoulidis-Schoen. These inequalities can be viewed as certain estimates of the Hawking mass. This talk is based on a joint work with Pengzi Miao at University of Miami.
来源:中国科学院数学与系统科学研究院
中国科学院数学与系统科学研究院
微信号:cas-amss
长按二维码—识别—关注

投稿或法律相关事宜请通过邮件联系我们
邮箱:amss01@amss.ac.cn
http://weixin.100md.com
返回 中国科学院数学与系统科学研究院 返回首页 返回百拇医药