2018年3月23日Science期刊精华
2018/3/27 中国科学院武汉文献情报中心

    

     1.两篇Science揭示来自淋巴结转移的癌细胞可成为远处转移瘤的来源doi:10.1126/science.aal3622; doi:10.1126/science.aal3662

     在一项新的研究中,来自美国麻省总医院(MGH)和哈佛医学院的研究人员发现在小鼠模型中,来自转移性淋巴结(metastatic lymph node)的癌细胞能够通过入侵淋巴结血管而逃逸到血液中,从而导致在身体其他部位产生转移瘤(metastases)。他们的发现为淋巴结 在癌症扩散中发挥作用的主张增加了证据。相关研究结果发表在2018年3月23日的Science期刊上,论文标题为“Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice”。

     为了研究来自淋巴结转移的癌细胞是否能够扩散到其他器官中,这些研究人员利用一种荧光蛋白对几种不同类型的癌细胞---来自黑色素瘤和鳞状细胞癌模式小鼠---进行标记,其中这种荧光蛋白当接受特定光线照射时,它从发出绿色荧光转化为发出红色荧光。将这些经 过标记的癌细胞移植到小鼠体内可产生原发性肿瘤,而且当发生淋巴结转移时,转移性癌细胞从发出绿色荧光转化为发出红色荧光。在血液或身体其他地方发现的发出红色荧光的癌细胞可能仅来自转移性淋巴结而不是原发性肿瘤。

     这些研究人员在这些小鼠的血液中检测到发出红色荧光的循环肿瘤细胞,这表明癌细胞正从从转移性淋巴结释放出来。他们还在这些小鼠的肺部中发现了发出红色荧光的癌细胞,从而支持这一假说:来自淋巴结转移的细胞能够在肺部或其他器官中形成新的转移性癌细胞 集落。在这项研究中,通过仔细研究这些小鼠的转移性淋巴结,他们提出淋巴结内的转移性细胞可能通过免疫细胞穿过淋巴结所需经过的导管进入血管。同样地,在头颈癌患者的淋巴结中,肿瘤细胞能够在淋巴结血管中鉴定出。

     在另一项发表在同期Science期刊上的论文标题为“Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice”的研究中,奥地利维也纳医科大学的D. Kerjaschki和奥地利科学技术学院的M. Sixt及其同事们通过将癌细胞微 灌注到输入淋巴管(afferent lymphatic vessel)中,将它们运送到小鼠的淋巴结中。他们发现肿瘤细胞快速地浸润淋巴结实质,侵入淋巴结血管,并且在无需胸导管的参与下导致肺部转移瘤产生。这些研究结果提示着在实验性小鼠模型中,淋巴结血管能够作出癌细胞 在全身扩散的一种应急通路。这种类型的肿瘤细胞扩散是否发生在癌症患者中发生还仍然有待确定。

     2.Science:揭示甲烷氧化菌素的生物合成机制doi:10.1126/science.aap9437

     甲烷氧化菌将来自环境的铜组装到对甲烷进行代谢的分子机器中,从而将甲烷转化为甲醇。 为了获得铜,许多甲烷氧化菌分泌一种被称作甲烷氧化菌素(methanobactin)的化学修饰肽,它紧紧地结合着铜离子,将铜离子招募到细胞中。迄今为止,人们对促进甲烷杆菌 素形成的细胞机器知之甚少。

     在一项新的研究中,美国西北大学的Amy C. Rosenzweig及其同事们鉴定出两种之前从未研究过的蛋白:MbnB和MbnC,它们部分上负责这种细菌的内部运作。这两种蛋白一起形成一种含铁酶复合物,这种含铁酶复合物将一种氨基酸转化为两种化学基团。这种化学反应产生 甲烷氧化菌素。作为一种铜载体,甲烷氧化菌素将铜招募到细胞中。Rosenzweig团队还发现这两种蛋白促进所有产生甲烷氧化菌素的细菌物种(包括非甲烷氧化菌)产生这种铜载体。相关研究结果发表在2018年3月23日的Science期刊上,论文标题为“The biosynthesis of methanobactin”。

     3.Science:童年缺乏母爱影响成年时的大脑发育doi:10.1126/science.aah3378; doi:10.1126/science.aat3977

     至少十年以来,科学家们已知道哺乳动物大脑中的大多数细胞都会经历DNA变化,从而使得每个神经元与相邻的神经元略有差别。其中的一些变化是由“跳跃”基因---正式名称为长散布核元件(long interspersed nuclear element, LINE)---引起的,它们从基因组上 的一个位点移动到另一个位点。2005年,美国沙克生物研究所遗传学实验室的Rusty Gage教授及其团队发现一种被称作L1的跳跃基因能够在发育中的神经元(一类脑细胞)内跳跃。

     在一项新的研究中,Gage、Bedrosian及其同事们先是观察母鼠和它们的后代之间的抚养方式的自然变化。他们随后研究了来自小鼠后代海马体的DNA,其中海马体参与情绪、记忆和一些非自主功能。他们发现母鼠关抚养方式与L1拷贝数之间存在相关性:接受母鼠专心照 顾的小鼠后代具有更少的跳跃基因L1拷贝,而那些缺乏母鼠照顾的小鼠后代具有更多的L1基因拷贝,因而在它们的大脑中具有更多的遗传多样性。相关研究结果发表在2018年3月23日的Science期刊上,论文标题为“Early life experience drives structural variation of neural genomes in mice”。

     为了确保这种差异不是偶然的,这些研究人员开展了一系列对照实验,包括检查每只小鼠后代的双亲的DNA,以确保这些小鼠后代不仅从双亲那里遗传L1的拷贝数,同时验证这种额外的DNA序列元件实际上是基因组DNA而不是来自细胞核外部的遗传物质。最后,他们让这些 小鼠后代接受交叉抚养:不提供母爱的母鼠生下的小鼠后代被由提供母爱的母鼠抚养,反之亦然。L1拷贝数与母鼠抚养方式之间存在关联性的初始结果依然成立:相比于由提供母爱的母鼠生下的但由不提供母爱的母鼠抚养的小鼠后代,由不提供母爱的母鼠生下的但由提 供母爱的母鼠抚养的小鼠后代具有更少的L1拷贝数。

     这些研究人员猜测由不提供母爱的母鼠生下的后代遭受更多的压力,并且在某种程度上,这导致基因更加频繁地拷贝和移动。有趣的是,抚养方式与已知的其他跳跃基因的拷贝数之间不存在类似的相关性,这提示着L1具有独特的作用。因此,接下来,他们研究了甲基 化---DNA上的化学标记模式,该模式可指示基因是否应该被拷贝,而且会受到环境因素的影响。在这项研究中,已知的其他跳跃基因的甲基化对于所有小鼠后代都是一致的。但对L1而言,情况就有所不同:相比于由提供母爱的母鼠生下的小鼠后代,由不提供母爱的母鼠 生下的小鼠后代具有显著更少甲基化的L1基因,这提示着甲基化是导致L1基因迁移的机制。

    http://weixin.100md.com
返回 中国科学院武汉文献情报中心 返回首页 返回百拇医药