蒿杰团队实感计算架构助力20超导量子比特薛定谔猫态制备
2019/8/13 17:40:43紫冬君 中国科学院自动化研究所

    

     CASIA解锁更多智能之美

     【导读】近日,自动化所蒿杰研究员团队经过多年攻关,提出具有实时感知-计算-操控能力强、易扩展性和低功耗的实感计算架构,应用于20超导多量子比特纠缠态制备。团队与浙江大学、中科院物理所、北京计算科学研究中心等团队密切合作,成功将全局量子纠缠的量子比特数目推进到20个,成果已于8月9日在国际学术刊物《科学》发表。

     超导量子计算平台可集成多个量子比特,相干时间长、操控和读出精度高,是实用化、可扩展量子计算主要技术路线之一。衡量量子计算平台性能的一个标志性成果是多量子比特纠缠态的制备,特别是Greenberger-Horne-Zeilinger(GHZ)态的实验制备,国际竞争尤为激烈。近日,由浙江大学、中科院物理研究所、中科院自动化所、北京计算科学研究中心等国内单位组成的团队,在超导量子计算实验取得重要进展。

     实感计算架构助力20超导量子比特薛定谔猫态制备中科院自动化所蒿杰研究员、冯卉助理研究员与浙江大学博士生宋超、王浩华教授、王大伟教授、朱诗尧院士,以及中科院物理所范桁研究员、郑东宁研究员、许凯副研究员、博士生李贺康(现浙江大学博士后)、张煜然博士(现北京计算科学研究中心博士后)等通力合作,经过近两年时间的器件设计与制备、实验测控运行及数据处理,成功将全局量子纠缠的量子比特数目推进到20个,特别是实现了18个量子比特GHZ态制备,其保真度超过GHZ多体真纠缠的判据阈值,并首次展示了20量子比特5组分薛定谔猫态。这一成果将固态系统GHZ态纠缠量子比特数世界纪录从10个推进到18个,成果已于8月9日在国际学术刊物《科学》发表(Science 365, 574-577 (2019))。

     实感计算架构特点及应用实感计算架构通过低延时感算控一体化设计,具有实时感知-计算-操控能力强、易扩展性、低功耗的特点,已成功应用于射电大科学装置、边缘计算、全脑区活体光学实时成像与操控等高通量、低延时、快迭代计算场景。

     使用该架构在超导量子计算系统中主要实现了对量子比特的高精度控制、量子态的读取及解析等关键任务。对量子比特的控制需要可调控每一个量子比特的状态翻转以及频率调制。通过高精度实时控制输出信号的波形包络、偏置波形的频率以及信号通断等,实现了对多个量子比特的精确调控。通过高速采集可对多个量子比特状态进行同时读取,经过实时分析得到各量子比特的状态信息。实感计算架构的高通量信号注入能力使得测控系统对量子比特的调控更加精确,提高了量子门的操控精度,降低量子门出错率,有助于实现容错计算。由于整体的低功耗设计保证了较低的热噪声水平,减小了量子比特能量抖动,有利于延长量子比特的相干时间,防止其快速衰退为经典态,从而影响超导量子比特的计算能力。同时,该架构有较强的可扩展性,后续可以实现更多量子比特的控制。

    

    超导量子处理器及其基准特性

     由于量子计算机的强大能力,使它有可能快速完成某些经典计算机无法完成的计算,使其在新药研发、网络安全、金融服务等领域具有广泛的应用前景。Dario Gil(Director of IBM Research)在文章中甚至提到“随着人工智能问题复杂性的增加,量子计算——数千家企业已经通过IBM的云量子计算服务访问——可能会改变我们处理AI计算任务的方式。”

     此前,以此实体计算架构为原型的系列化产品在在FAST工程和我国最大的射电干涉阵列“天籁”系统及国家电网在线学习等项目中均得到成功应用。

     背景知识1. 超导量子比特薛定谔猫态和GHZ态:薛定谔猫(态)来源于量子力学奠基人之一薛定谔所提出的一个著名假想实验,设想微观粒子态, |0〉,|1〉,和宏观生命状态猫的死和活相关联,形成相干叠加的量子态形式,|0〉|猫活〉+|1〉|猫死〉,则该只猫既不是死也不是活;同时,薛定谔猫态也和爱因斯坦-波多尔斯基-罗森(EPR)对的量子纠缠态有相似的形式,|00〉+|11〉,只不过爱因斯坦-波多尔斯基-罗森对一般指空间分离的两个微观粒子,1990年提出的GHZ态是薛定谔猫态和EPR对的直接推广, |000〉+|111〉, 但是指出了全局纠缠的概念,因为在不考虑第三个粒子时,GHZ态中任意两个粒子间没有量子纠缠,只有经典关联,所以三个粒子是全局纠缠在一起的。由于这些概念相互关联,而量子态的具体形式又基本相同,现在把多粒子纠缠态|00…0〉+|11…1〉称之为多比特GHZ态,或者两组分的薛定谔猫态,同时把相似的多组分叠加态统称为薛定谔猫态,文章中采取这样的约定,图一展示了薛定谔猫态和GHZ态。

    图1:量子态的时间演化过程,薛定谔猫态和GHZ态在不同时间点被分别制备,上下两行A、B是数值模拟和实验结果的对照,C部分展示了薛定谔猫态的量子性验证,此图来自《科学》文章配图。

     2. 薛定谔猫态和GHZ态制备的意义:多量子比特GHZ和薛定谔猫态制备,一方面可用来进行量子力学基本问题探索,比如验证量子态非定域性和互文性(contextuality, 指互不对易的两种测量算子,对系统的测量结果依赖于两个测量的先后顺序)等原理,如贝尔不等式和Mermin不等式等;另一方面如果可以制备各种纠缠态如簇态,则通用量子计算可采用遵从特定时序的单量子比特测量来实现,即单向方式,会大大降低实现量子计算的难度,所以多比特纠缠态的制备是实现单向量子计算的技术基础。

    

    论文:Chao Song, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo, Zhen Wang, Wenhui Ren, Jie Hao, Hui Feng, Heng Fan, Dongning Zheng, Da-Wei Wang, H. Wang, Shi-Yao Zhu,Generation of multi-component atomic Schr?dinger cat states of up to 20 qubits,Science 365, 574-577 (2019).

     原文页面:https://science.sciencemag.org/content/365/6453/574

     感谢中科院物理所《20超导量子比特薛定谔猫态制备》提供薛定谔猫态和GHZ态制备相关资料。

    

    智显未来,洞见新知Discover Intelligence Future更多精彩内容,欢迎关注中科院自动化所官方网站:http://www.ia.ac.cn欢迎后台留言、推荐您感兴趣的话题、内容或资讯,小编恭候您的意见和建议!如需转载或投稿,请后台私信。文字来源:自动化所高性能计算系统与架构设计团队图片来源:《Science》编辑:鲁宁排版:刘琪

    

    

    http://weixin.100md.com
返回 中国科学院自动化研究所 返回首页 返回百拇医药